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Abstract
We consider graphs made of one-dimensional wires connected at vertices, and
on which may live a scalar potential. We are interested in a scattering situation
where such a network is connected to infinite leads. We study the correlations
of the charge in such graphs out of equilibrium, as well as the distribution of
the currents in the wires, inside the graph. These quantities are related to the
scattering matrix of the graph. We discuss the case where the graph is weakly
connected to the wires.

PACS numbers: 03.65.Nk, 73.23.−b

1. Introduction

Within the field of mesoscopic physics, the interest in graphs is motivated by the fact that
they provide simple models for networks of wires, which are most of the time sufficient to
describe the effect of interest (such as Aharonov–Bohm oscillations of the conductance of a
ring, for example). Scattering theory plays a central role in mesoscopic physics: it provides
a transparent formalism to study transport properties of phase coherent systems. Moreover,
many other physical quantities can be related to scattering properties, such as the current
noise [1, 2], the density of states through the Friedel sum rule, mesoscopic capacitance and
relaxation resistance [3, 4]. Scattering on graphs has attracted the attention of many authors
among which we can quote [5–14].

Despite the scattering matrix being a global quantity characterizing the full system,
some local information can be extracted from it. This idea has been fruitfully exploited
in many works of Büttiker et al (see review articles [15, 16] and references therein). To
understand this point let us first consider the case of an isolated system (an isolated graph for
example). In this case, the spectrum of the Schrödinger operator is discrete : En, ϕn(x). Let
us consider a physical quantity described by the operator X̂, related to a conjugate variable
f (that is X̂ = (∂/∂f )Ĥ where Ĥ is the Hamiltonian). Typical examples are provided by a
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magnetization M, a persistent current I, or the local density ρ(x), which are conjugated to
the magnetic field −B, a flux4 −φ and the potential V (x), respectively. As is well known, a
simple way to obtain the expectation value of the physical quantity of interest is to compute
the derivative of the eigenenergies with respect to f : Xn = 〈ϕn |X̂|ϕn〉 = ∂En/∂f . This
result is known as the Feynman–Hellmann theorem.

A natural question is how to extend these relations to open systems that are connected
to reservoirs possibly in an out-of-equilibrium situation. As is well known, the scattering
approach will prove to be relevant for this purpose. The open system of interest in the present
paper will be a graph connected to some infinite wires. In this case the spectrum is continuous.
The stationary scattering states ψ̃

(α)
E (x) describing the injection of a plane wave at contact

α provide the convenient basis of states for the discussion. Then we can relate the quantity
of interest (that can give local information) to the scattering matrix � through the relation:〈
ψ̃

(α)
E

∣∣X̂∣∣ψ̃(β)

E

〉 = −(1/2iπ)(�†∂�/∂f )αβ . In the case of graphs, this idea will be made explicit
in three cases: (i) when X̂ → ρ̂(x) is the local density of electrons5 (then f → V (x) is the
local potential), (ii) if X̂ → Q̂ is the charge of the graph (f → U is a potential constant inside
the graph) and (iii) if X̂ → Ĵ µν is the current in an arc of the graph (f → θµν is the flux along
the arc).

The purpose of our paper is to study the distribution of charge and current densities in
a graph out of equilibrium. The out of equilibrium regime is obtained by imposing different
potentials at the external leads. A motivation for this study comes from the recent interest
in quantum coherent devices such as Cooper pair boxes used for building charge qubits (see
[20] for a review). The full spectrum of charge fluctuations is involved in the study of the
dephasing in a qubit perturbed by the charge fluctuations of another conductor capacitively
coupled to the first one [15, 21, 22]. In the same way, current density fluctuations are a
source of dephasing for qubits based on flux states. Since the formalism developed in the
present paper provides a systematic way of evaluating the charge and current density noise
fluctuations in a mesoscopic circuit, it might be useful for estimating the dissipation and
decoherence properties of some experimental systems of qubits. More precisely, it was shown
that transition rates of a two-level system weakly coupled to a quantum environment are
directly related to the unsymmetrized correlator: see for example [23] where the roles of the
negative and positive parts of the spectrum of the unsymmetrized correlator are studied. On the
other hand, the relaxation and decoherence rates are related to a symmetrized correlator [20].
Correlators are more directly accessible in noise measurements: in a recent work, Gavish
et al [24, 25] proposed a description of the full measurement chain for the current noise
of a mesoscopic sample. In this work, the unsymmetrized correlator is involved in excess
noise measurement. Finally one should mention that experimentalists are now able, using
photon-assisted tunnelling in a superconductor–insulator–superconductor tunnel junction, to
measure the unsymmetrized current noise correlator in quantum mesoscopic devices [26].
The question of which correlator (symmetrized or not) to consider depends on the question
of interest. Therefore we will consider in the following the unsymmetrized correlator as the
fundamental object6.

In this paper, electron–electron interactions will not be taken into account. However, even
if this limits the applicability of our results, we recall that they can be taken into account in

4 The variable conjugate to a flux line threading a loop of a planar graph is the current flowing through the semi-
infinite line issuing from the flux [17] (see also [18]). This can also be easily understood in the two-dimensional plane
[19].
5 In this case 〈 ψ̃

(α)
E |ρ̂(x)| ψ̃(β)

E 〉 = ψ̃
(α)∗
E (x)ψ̃

(β)
E (x) is an off-diagonal element of the local DoS [13, 15].

6 There are indeed two unsymmetrized correlators depending on the order chosen. But for a system in a stationary
regime, they can be simply related as shown in appendix A.
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a mean-field Hartree approximation within the scattering approach, as has been developed in
several papers by Büttiker and collaborators [3, 4, 27] (see also [28] for a review). In this
framework the charge (or the current) contains two contributions: a bare contribution (injected
charge) and a contribution from screening. Screening affects ac transport or finite frequency
noise. It is not the purpose of our paper to consider such interaction effects; in other terms we
will focus on the bare contribution of the charge and its relation to the scattering matrix of a
graph.

This paper is organized as follows: first of all, the basic formalism [10] necessary for
the discussion is recalled. Then the charge distribution inside the graph is analysed in detail.
The first and second moments of the total charge are related to the scattering matrix. Finally
analytic expressions for the full spectrum of charge fluctuations are provided.

In a further section we will show how currents inside the graph can be related to the
scattering matrix. It was shown in [17] that the persistent current can be related to the derivative
of the Friedel phase with respect to the magnetic flux. In this work the possible generalization
to an out-of-equilibrium situation was not considered because the authors did not identify
the different contributions of the various scattering states associated with the different leads.
These contributions were identified later in [29]. Moreover, in Taniguchi’s work, a formula
relating the current–current correlations and the scattering matrix was proposed. Despite the
contributions of the scattering states to the correlator being given, it is still not sufficient to
study current–current correlations in an out-of-equilibrium situation (this point will be made
clear later). Our results go beyond this limitation and provide a generalization of Taniguchi’s
result.

2. Basic formalism: scattering matrix

We consider the Schrödinger operator −D2
x + V (x) on a graph, where Dx = dx − iA(x) is the

covariant derivative (we choose units h̄ = 2m = e = 1). The graph is made of B bonds (αβ),
each being identified with an interval [0, lαβ] ∈ R. We call xαβ the coordinate that measures
the distance from the vertex α. The Schrödinger operator acts on a scalar function ϕ(x) which
is described by B components ϕ(αβ)(xαβ), one for each bond. The bonds are connected at V

vertices. The adjacency matrix aαβ encodes the structure of the graph: aαβ = 1 if (αβ) is a
bond and aαβ = 0 otherwise.

2.1. Vertex formulation

Let us first assume that the wavefunction is continuous at each vertex. This allows us to
introduce vertex variables; we denote as ϕα ≡ ϕ(α) the function at the vertex α. The continuity
condition reads: ϕ(αβ)(xαβ = 0) = ϕα for all vertices β neighbours of α. A second condition is
added to ensure current conservation at the vertices:

∑
β aαβDxϕ(αβ)(xαβ = 0) = λαϕα where

the sum over β runs over all neighbouring vertices of α due to the presence of the adjacency
matrix. λα is a real parameter. The requirement of continuity of the wavefunction imposes a
special scattering at the vertices: in particular, the transmission amplitudes of a plane wave of
energy E = k2 between two leads issuing from the same vertex of coordinance mα =∑β aαβ

are all equal to 2/(mα + iλα/k).
The wavefunction on the bond (αβ) is

ϕ(αβ)(xαβ) = exp(ixαβθαβ/ lαβ)(ϕαfαβ(xαβ) + ϕβ exp(−iθαβ)fβα(xαβ)) (1)

where θαβ is the magnetic flux along the bond (αβ) (the vector potential is Aαβ = θαβ/ lαβ).
The two real functions fαβ(x), fβα(x) are the two linearly independent solutions of the
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wα

α

Figure 1. Example of graph. The boxes represent the couplings between the infinite leads and the
graph.

Schrödinger equation
[
E + d2

x − V(αβ)(x)
]
f (x) = 0 on the bond satisfying boundary

conditions: fαβ(0) = 1, fαβ(lαβ) = 0, fβα(0) = 0 and fβα(lαβ) = 1. These two functions
encode the information about the potential on the bond. For example, in the absence of
potential, V (x) = 0, we have fαβ(xαβ) = sin k(lαβ − xαβ)/sin klαβ .

The graph is connected to L leads. Each lead is a semi-infinite line plugged at a vertex
of the graph, with a coupling parameter wα ∈ R (see figure 1). The introduction of these
couplings allows us to go continuously from an isolated graph to a connected one. The precise
physical meaning of these parameters is given in [10]. In particular, the transmission amplitude
through the box between the graph and the lead is 2wα

/(
1 + w2

α

)
. We introduce the L × V

matrix W :

Wαβ = wαδαβ (2)

where α belongs to the set of vertices connected to leads and β to the set of all vertices of
the graph. This matrix encodes the information about the way the graph is connected to the
external leads.

The scattering matrix � is a L × L matrix describing how a plane wave of energy E
entering from a lead is scattered into the other leads by the graph. It is given by

� = −1 + 2W
1

M + WTW
WT (3)

where the matrix M is

Mαβ(−E) = i√
E

(
δαβ

[
λα −

∑
µ

aαµ

dfαµ

dxαµ

(α)

]
+ aαβ

dfαβ

dxαβ

(β) exp(iθαβ)

)
. (4)

Note that for E > 0, this matrix is anti-Hermitian: M† = −M . It can also be related [10] to
reflection and transmission coefficients describing the potential on each bond:

Mαβ(−E) = δαβ

(
i

λα√
E

+
∑

µ

aαµ

(1 − rαµ)(1 + rµα) + tαµtµα

(1 + rαµ)(1 + rµα) − tαµtµα

)

− aαβ

2tαβ

(1 + rαβ)(1 + rβα) − tαβ tβα

. (5)

The expressions (4), (5), together with (3), generalize results known in the absence of the
potential [6].

The vertex formulation that we have just recalled is rather efficient mainly because vertex
matrices are rather compact. However, as we have noted, it corresponds to a particular choice
of vertex scattering which does not describe all allowed relevant physical situations. In the
most general situation it is no longer possible to introduce vertex variables and one has to use
the arc formulation that will now be briefly described.



Charge and current distribution in graphs 12429

α β
βαA

Bβα

αβA

Bαβ
αβ

βα

Figure 2. The internal amplitudes associated with the arcs αβ and βα.

2.2. Arc formulation

An arc is an oriented bond. On each arc i we introduce an amplitude Ai arriving at the vertex
from which i issues and an amplitude Bi departing from it (see figure 2). Equivalently, the
wavefunction ψi(x) on the bond is matched with Ai exp(−ikx) + Bi exp(ikx) at the extremity
of the arc. It is clear then we have to introduce L such couples of amplitudes, one for each
external lead. These external amplitudes are gathered in L column vectors Aext and Bext. By
definition the scattering matrix relates these amplitudes: Bext = �Aext. On the other hand we
must introduce two couples of amplitudes Ai, Bi per bond of the graph, i.e. one couple per
arc. We gather these 2B amplitudes into the column vectors Aint and B int. Finally we group
all amplitudes, internal and external, into two 2B + L column vectors A and B.

The scattering by the bonds is described by a matrix R coupling reversed internal arcs:
Aint = RB int. The matrix element between arcs i and j is given by

Rij = riδi,j + tīδī,j (6)

where ī designate the reversed arc. ri and ti are the reflection and transmission coefficients
describing the scattering of a plane wave by the potential of the bond (i). The scattering at the
vertices is described by a matrix Q coupling arcs issuing from the same vertex: B = QA. If
the basis of arcs is organized as {internal arcs, external arcs}, the matrix Q can be separated
into blocks:

Q =
(

Qint Q̃T

Q̃ Qext

)
. (7)

The scattering matrix reads

� = Qext + Q̃(R† − Qint)−1Q̃T. (8)

For more details, see [10]. Historically, the arc approach has been followed in many
works, such as [30–32] since it is the most natural approach. It has been formalized more
systematically in [33] without potential and in [10] in the most general case.

How can we express the wavefunction inside the graph within the arc formulation?
In this case, the appropriate basis of solutions of the Schrödinger equation on the bond[
E + d2

x − V(αβ)(x)
]
f (x) = 0 is no longer the functions fαβ(x) and fβα(x) introduced above,

but the couple of stationary scattering states φαβ(x) and φβα(x) associated with the potential
V(αβ)(x) on the bond (αβ). If we imagine that the potential V(αβ)(x) is embedded in R,
then the function φαβ(x) is the scattering state incoming on the potential from the vertex
α and is matched out of the bond to: φαβ(x) = exp(ikx) + rαβ exp(−ikx) for x < 0 and
φαβ(x) = tαβ exp(ik(x − lαβ)) for x > lαβ [10].

Then the component of the wavefunction ϕ(x) on the bond (αβ) reads

ϕ(αβ)(xαβ) = Bαβφαβ(xαβ) + Bβαφβα(xαβ). (9)
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3. Charge of the graph

This section is devoted to the study of the charge distribution in the graph. Our discussion
will focus on the average and correlation of the total charge of the graph. The average charge
and the zero frequency charge noise can be related to the graph’s scattering matrix. These
relations provide an extension of the Feynman–Hellman theorem for open systems in an
out-of-equilibrium situation. Then, we present a detailed study of the charge noise at finite
frequency, emphasizing the effect of the non-equilibrium regime. For simplicity, we shall
work at vanishing temperature.

It is convenient to use the language of ‘second-quantization’ and introduce the field
operator:

ψ̂(x, t) =
L∑

α=1

∫ ∞

0
dE ψ̃

(α)
E (x)âα(E) exp(−iEt) (10)

where âα(E) is the annihilation operator associated with the stationary scattering state
ψ̃

(α)
E (x) corresponding to a plane wave of energy E injected from the lead α. Note that

ψ̂(x, 0)
∣∣ψ̃(α)

E

〉 = ψ̃
(α)
E (x)|vacuum 〉.

Studying the charge distribution for graphs with localized states [11, 13, 34] would
require taking into account the contribution of the discrete spectrum in the field operator:∑

n

∑gn

j=1 ϕn,j (x)ân,j exp(−iEnt) (the function ϕn,j (x) is an eigenstate of energy En localized
in the graph and thus normalized to unity in the graph, and j denotes a degeneracy label).
However, such a situation is not generic but arises from symmetries of the graph. For this
reason, we shall not discuss it here.

In a non-equilibrium situation, the quantum statistical average gives:
〈
â†

α(E)âβ(E′)
〉 =

δαβδ(E−E′)fα(E) where fα(E) is the Fermi–Dirac distribution function giving the occupation
of the scattering states coming from the lead α.

Charge operator. The charge operator is

Q̂(t) =
∫

Graph
dxψ̂ †(x, t)ψ̂(x, t). (11)

We introduce its matrix elements on the shell of energy E:

ρ(α,β)(E) = 〈ψ̃(α)
E

∣∣Q̂(t)
∣∣ψ̃(β)

E

〉
. (12)

Since the spectrum is continuous, these matrix elements have the dimension of a density of
states (DoS). They can be related to the scattering matrix

ρ(α,β)(E) = − 1

2iπ

(
�† d�

dU

)
αβ

(13)

where U is a constant potential added inside the graph only (the variable conjugate to the
charge of the graph). Instead of differentiating with respect to some additional background
potential U, it is also possible to relate it to the derivative with respect to the energy:

ρ(α,β)(E) =
∫

Graph
dxψ̃

(α)
E (x)∗ψ̃(β)

E (x) = 1

2iπ

(
�† d�

dE
+

1

4E
(� − �†)

)
αβ

. (14)

Note that
∑

α ρ(α,α)(E) is the DoS of the graph, i.e. the local DoS integrated inside the graph.
These relations are proved in appendix C.

Average charge. The average charge

〈Q̂(t)〉 =
∑

α

∫ ∞

0
dEfα(E)

∫
Graph

dx
∣∣ψ̃(α)

E (x)
∣∣2 =

∑
α

∫ ∞

0
dEfα(E)ρ(α,α)(E) (15)
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involves the injectivities ρ(x, α;E) = ∣∣ψ̃(α)
E (x)

∣∣2, which are the contributions to the local

density of states (LDoS) coming from the scattering state ψ̃
(α)
E (x). The contribution ρ(α,α)(E)

of the scattering state ψ̃
(α)
E to the DoS of the graph is weighted by the occupation Fermi factor

in the lead α. This illustrates the necessity of the concept of injectivities, emissivities, etc, in
the context of out-of-equilibrium systems [3, 35] (see also [13] for a discussion in the context
of graphs).

Charge correlation function. The charge correlation function is defined as

SQQ(ω) =
∫ +∞

−∞
d(t − t ′)(〈Q̂(t)Q̂(t ′)〉 − 〈Q̂(t)〉〈Q̂(t ′)〉) exp(iω(t − t ′)). (16)

In appendix A, the relation between this unsymmetrized correlator and the other one (Q(t)

and Q(t ′) in reverse order) is clarified. Definition (16) matches with that used in [23]
which contains a detailed discussion of the relation between the unsymmetrized correlator and
transition rates in a two-level system linearly coupled to the charge operator.

Using the relation
〈
â†

αâβ â†
µâν

〉− 〈â†
αâβ

〉〈
â†

µâν

〉 = δανδβµfα(1 − fβ) we obtain

SQQ(ω) = 2π
∑
α,β

∫ ∞

0
dEfα(E)[1 − fβ(E + ω)]

∣∣∣∣
∫

Graph
dxψ̃

(α)
E (x)∗ψ̃(β)

E+ω(x)

∣∣∣∣
2

. (17)

Only the zero-frequency correlations involve the ρ(α,β)(E):

SQQ(ω = 0) = 2π
∑
α,β

∫ ∞

0
dEfα(E)[1 − fβ(E)]ρ(α,β)(E)ρ(β,α)(E). (18)

Using equation (14) the zero-frequency noise of the total charge is related to the scattering
matrix of the graph.

Charge fluctuations. The charge fluctuations at a given time involve the integral of the full
spectrum:

q2 = 〈Q̂(t)2〉 − 〈Q̂(t)〉2 = 1

2π

∫
dωSQQ(ω). (19)

In terms of the stationary scattering states, we get

q2 =
∑
α,β

∫ ∞

0
dE dE′fα(E)[1 − fβ(E′)]

∣∣∣∣
∫

Graph
dxψ̃

(α)
E (x)∗ψ̃(β)

E′ (x)

∣∣∣∣
2

. (20)

3.1. Weakly connected graphs

To go further let us focus on the case of graphs weakly coupled to the leads (wα → 0).
Note that we do not consider charging effect in the following (Coulomb blockade) which is
important if the capacitance describing the Coulomb interaction between the leads and the
graph is small (see [36] for a review article). A description of such effects would require
a different approach. However, in the neighbourhood of the Coulomb peak, a description
within the scattering approach can be sufficient to describe transport, like it has been done
very recently in [49] to analyse Fano profile measurements in a ring with a dot embedded in
one of its arms.

If wα → 0 the decomposition of the scattering states over the resonances (levels of the
isolated graph), derived in appendix B, can be used,

ψ̃
(α)
E (x) 


∑
n

1√
π

iE1/4
n wαϕ∗

n(α)

E − En + i�n

ϕn(x). (21)
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Here ϕn(x) denotes the wavefunction of the eigenstate of energy En of the isolated graph,
normalized to unity in the graph. From this expression we get

ρ(α,β)(E) 

∑

n

1

π

√
�n,α�n,β exp(iχαβ)

(E − En)2 + �2
n

(22)

where �n,α = √
Enw

2
α

∣∣ϕn(α)|2 is the contribution of the contact α to the resonance width
�n =∑α �n,α . The phase is given by exp(iχαβ) = ϕn(α)∗ϕn(β)/|ϕn(α)ϕn(β)|.
3.1.1. Average charge. Equation (15) gives

〈Q̂(t)〉 

∑

α

∫ ∞

0
dEfα(E)

∑
n

�n,α/π

(E − En)2 + �2
n

=
∑

n

∑
α

�n,α

�n

(
1

π
arctan

Vα − En

�n

+
1

2

)
(23)

where the sum over n runs over the energies of the resonances (energies of the isolated graph).
Vα is the potential at contact α. This equation was derived in [37] by tracing out the lead’s
degrees of freedom. Since the average charge is the sum of contributions of the various levels,
we can consider only one level En. If the level is below the potentials, En < VR < VL, the
occupation of the level is 1. On the other hand, if the level En is between the potentials,
VR < En < VL, and far enough from them (on the scale �n), it gives a contribution �n,L/�n

to the average charge, which simply expresses that only the left scattering state is contributing
to the occupation of the resonant level.

3.1.2. Charge noise at finite frequency. Let us now discuss the finite frequency structure of
the charge noise for weakly connected graphs. Equation (17) requires evaluating∣∣∣∣
∫

Graph
dxψ̃

(α)
E (x)∗ψ̃(β)

E+ω(x)

∣∣∣∣
2



∣∣∣∣∣
∑

n

1

π

√
Enwαwβϕn(α)ϕ∗

n(β)

(E − En − i�n)(E + ω − En + i�n)

∣∣∣∣∣
2

. (24)

Let us keep only the diagonal elements in the double sum. This diagonal approximation is
valid in the limit of narrow resonances (�n � |En+1 −En|) since the energies E and E + ω are
then compelled to both be in the neighbourhood of the level En. Then the correlation appears
as a sum of contributions of the different energy levels:

SQQ(ω) 

∑

n

S
(n)
QQ(ω). (25)

The contribution of the level En reads

S
(n)
QQ(ω) = 2π

∑
α,β

∫
dEfα(E)[1 − fβ(E + ω)]

�n,α/π

(E − En)2 + �2
n

�n,β/π

(E + ω − En)2 + �2
n

. (26)

Performing the integrals leads to

S
(n)
QQ(ω) = 1

2π

1

1 + ω2
/

4�2
n

∑
α,β

�n,α�n,β

�3
n

θ(ω + Vα − Vβ)A(Vα, Vβ;ω) (27)

where θ(ω) is the Heaviside function and

A(Vα, Vβ;ω) = arctan

(
Vα − En

�n

)
− arctan

(
Vβ − En

�n

)

+ arctan

(
Vα + ω − En

�n

)
− arctan

(
Vβ − ω − En

�n

)

+
�n

ω
ln

[
(Vα + ω − En)

2 + �2
n

][
(Vβ − ω − En)

2 + �2
n

]
[
(Vα − En)2 + �2

n

][
(Vβ − En)2 + �2

n

] . (28)
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Figure 3. Equilibrium noise in terms of −10 < ω/�n < 10 and of the energy of the level
(−En)/�n (this is equivalent to varying the energy or the chemical potential).

For the particular case of a two-terminal geometry the noise reads

S
(n)
QQ(ω) = 1

2π�3
n

1

1 + ω2
/

4�2
n

[
�2

n,Lθ(ω)A(VL, VL;ω) + �2
n,Rθ(ω)A(VR, VR;ω)

+ �n,L�n,Rθ(ω + V )A(VL, VR;ω) + �n,R�n,Lθ(ω − V )A(VR, VL;ω)
]

(29)

where V = VL − VR > 0 is the voltage drop.

• Equilibrium case: VL = VR = 0.

En

L R

VRVL Γn

Graphwire L wire R

S
(n)
QQ(ω) = 1

2π�n

θ(ω)

1 + ω2
/

4�2
n

[
arctan

(
ω − En

�n

)
+ arctan

(
ω + En

�n

)

+
�n

ω
ln

[
(ω − En)

2 + �2
n

][
(ω + En)

2 + �2
n

]
[
E2

n + �2
n

]2
]
. (30)

We consider the case of narrow resonances where �n is the smallest energy scale, then if the
frequency is smaller than |En|, the contribution is zero, but if ω is sufficiently large to excite
an energy level ω � |En|, we get a contribution:

S
(n)
QQ(ω) 
 1

2�n

θ(ω)

1 + ω2
/

4�2
n

×
{

0 if ω � |En|
1 if ω � |En|. (31)

Obviously, the transition between the two results is not sharp but occurs on a scale �n.
Practically all the noise power is concentrated at low frequencies as shown in figure 3.

Note that this contribution is independent of the fact that the level is occupied (En < 0)

or empty (En > 0) since it is an even function of En. At VL = VR , the low-frequency charge
noise can be understood using a classical stochastic model describing the relaxation process
of an electron (or a hole) with lifetime 1/2�n.
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• Non-equilibrium regime: VL �= VR .

Zero-frequency limit. Then only the term with A(VL, VR; 0) contributes

S
(n)
QQ(ω = 0) 
 1

π

�n,R�n,L

�3
n

{
arctan

(
VL − En

�n

)
+ arctan

(
En − VR

�n

)

+
�n(VL − En)

(VL − En)2 + �2
n

+
�n(En − VR)

(En − VR)2 + �2
n

}
. (32)

Each energy level brings a contribution only if it is between the potentials (VR < En < VL)

and far enough from them (on the scale �n). In this case, the zero-frequency charge noise is
given by

S
(n)
QQ(ω = 0) 
 �n,R�n,L

�3
n

. (33)

We recognize the factor �n,R�n,L characteristic of partition noise: if one of the couplings
vanishes (�n,R = 0 or �n,L = 0) the occupation of the level is either 0 or 1 and does not
fluctuate. These fluctuations are a signature of the non-equilibrium regime of the mesoscopic
circuit. The charge fluctuations at fixed time can be obtained by integrating the noise
spectrum (19). Using the approximate expression (21) in (20) we obtain

q2 

∑

n

∑
α,β

�n,α�n,β

�2
n

(
1

π
arctan

Vα − En

�n

+
1

2

)(
1

π
arctan

En − Vβ

�n

+
1

2

)
. (34)

In the two-lead case, only the levels between the two potentials make a contribution

q2 
 �n,L�n,R

�2
n

. (35)

Note that this result cannot be simply inferred from the current shot noise. Near
a resonance, the transmission probability through the graph is T (E) 
 4�n,L�n,R

/[
(E − En)

2 + �2
n

]
. The average current in the lead is given by the Landauer formula

〈I 〉 = (1/2π)
∫ VL

VR
dET (E) whereas the current and the shot noise is given by SII (ω =

0) = (1/2π)
∫ VL

VR
dET (E)(1 − T (E)) [1, 2, 38]. If only one level En lies between

the two potentials, we obtain in this nonlinear regime [39]: 〈I 〉 
 2�n,R�n,L/�n and
SII (ω = 0) 
 2

(
�n,R�n,L

/
�3

n

)(
�2

n,R + �2
n,L

)
.

Finite-frequency noise. Let us choose the origin of the energies in such a way that:
VR = 0, VL = V > 0. Four energy scales must be considered: En, �n, V and ω. Several
regimes can be observed according to the frequency. To help the discussion we neglect the
smallest scale, supposed to be �n, as we did above.

(i) Let us first discuss the case of a fully occupied level: En < VR = 0.

VL

VR
En

Graph
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ω/Γ

V/Γ

-20

100

Figure 4. Non-equilibrium noise in terms of −20 < ω/�n < 100 and of the voltage drop V/�n

for a fully populated level (VR = En + 50�n).

At small frequencies, correlations are roughly zero. When ω reaches VR − En,
contributions from the second and third terms appear, while all terms contribute for
ω larger than VL − En. To summarize these three regimes:

S
(n)
QQ(ω) 
 1

2�n

1

1 + ω2
/

4�2
n

×



0 if ω � VR − En

�n,R/�n if VR − En � ω � VL − En

1 if VL − En � ω

(36)

where we have factorized the equilibrium result.

In the second regime VR − En � ω � VL − En, the energy ω is sufficient to excite
the state originating from the right reservoir but not from the left reservoir. This is the
origin of the ratio �n,R

/
�n. In the third regime, both reservoirs contribute to the noise.

At fixed non-zero bias voltage, this leads to a double peak structure in terms of the ω

which corresponds to the threshold for creating electron–hole pairs involving the left and
right leads (see figure 4). At small V these two peaks tend to merge into a single more
pronounced one. At large V the second peak occurs at a larger frequency and is less
pronounced because of the Lorentzian factor.

(ii) Let us now discuss the case of an empty level: En > VL.

VL

VR

En

Graph

The physical picture can be obtained using a hole picture. Three different regimes can
also be distinguished:

S
(n)
QQ(ω) 
 1

2�n

1

1 + ω2
/

4�2
n

×




0 if ω � En − VL

�n,L/�n if En − VL � ω � En − VR

1 if En − VR � ω.

(37)
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Figure 5. Non-equilibrium noise in terms of −40 < ω/�n < 40 and of V/�n. The right
lead chemical potential is fixed to −10�n. Case (iii) corresponds to V > 10�n and exhibits an
important low-frequency noise whereas V < 10�n corresponds to case (ii).

(iii) Finally we consider the case of a level between the two potentials VR < En < VL.

VL

VR

En

Graph

Considering the case where the level is closer to VL than to VR , we obtain

S
(n)
QQ(ω) 
 1

2�n

1

1 + ω2
/

4�2
n

×




0 if ω � −En + VR

�n,L�n,R

/
�2

n if −En + VR � ω � −VL + En

2�n,L�n,R

/
�2

n if −VL + En � ω � VL − En(
2�n,L�n,R + �2

n,L

)/
�2

n if VL − En � ω � En − VR

1 if En − VR � ω.

(38)

The fluctuation spectrum is symmetric in the interval centred around ω = 0 with width
of order V . The main contribution to the noise appears at low frequency as can be seen
from figure 5. The multiple plot (figure 6) shows how the low-frequency peak develops
when VL crosses the energy level.

Interestingly, correlations are proportional to the partition factor �n,R�n,L only for small
frequencies |ω| � V (or large timescales t 
 1/V ). For large frequencies |ω| 
 V ,
the partition factor does not appear. The high-frequency part of the charge fluctuation
spectrum is insensitive to the fact that the system is out of equilibrium. In this limit, the
equilibrium result (31) is recovered.
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ω/Γ100-10

(d)

(c)

(b)

(a)

Figure 6. Multiple plots of non-equilibrium charge noise in terms of −20 < ω/�n < 20 for
different values of V/�n. The right lead chemical potential is fixed as in figure 5. (a) V/�n = 4,
(b) V/�n = 8, (c) V/�n = 9 and (d) V/�n = 14.

4. Currents inside the graph

A possible way to probe a mesoscopic device is to attach some leads to it, through which some
currents are injected. Some information can be extracted from transport or noise properties:
average values and correlations of currents in the external leads. All these properties can
be related to the scattering matrix (see [39] for a review). If one is now interested in local
information on the system, like the measurement of a persistent current, a natural way would
be to introduce some local probe. However, as we have recalled in the introduction, local
information can also be extracted from scattering properties. Here, we investigate the currents
in the internal wires, and show the relation to the scattering properties. The starting point,
exposed in the introduction, is the relation between the current in a wire and the derivative
of the scattering matrix with respect to its conjugate variable, the flux in the wire. This idea
comes from [17] and has been elaborated further in [29] to include derivation of correlations
of the current density. Here, we focus on the case of graphs in the context of which we will
generalize these previous results to the non-equilibrium situation.

4.1. Current in a closed graph

First we derive an expression for the current density in a closed graph. It is convenient to
introduce the spectral determinant of the Schrödinger operator

S(γ ) = det(−� + V (x) + γ ) =
∏
n

(En + γ ) (39)

where γ is a spectral parameter. The set of En is the spectrum of the Schrödinger operator
on the graph. It was shown in [40–43] that the spectral determinant, which is the determinant
of an unbounded operator, can be related to the determinant of a finite-size matrix. In the
vertex approach, formula (100) involves a V × V matrix, whereas in the arc language the
spectral determinant involves a 2B × 2B matrix: S(−E) ∝ det(1 − QR) [41, 43]. Note
that for a closed graph, the vertex scattering matrix Q has the same dimension as the bond
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scattering matrix. We introduce the current density j (E) associated with the states in the
interval [E,E + dE[. The current density in the arc a is

ja(E) = −
∑

n

δ(E − En)
∂En

∂θa

= 1

π
Im

∂

∂θa

ln S(−E + i0+) (40)

where θa is the magnetic flux along this arc.

Example. Consider a closed ring of perimeter l threaded by a flux θ . Its spectral determinant is
S(γ ) = ch(

√
γ l)−cos(θ) [41]. We write: γ = −k2+i0+, then ch(

√
γ l) = cos(kl)+i0+ sin(kl)

and we get for the current density in the ring:

j (E) = − sin θ sign(sin kl)δ(cos kl − cos θ) =
∑

n

δ(E − En)In (41)

with In = −∂θEn where En = (2nπ − θ)2/l2.

4.2. Current in open graphs

Now we consider a graph connected to infinite leads.
The current operator is

Ĵ (x, t) = 1

i
[ψ̂ †(x, t)Dxψ̂(x, t) − D∗

xψ̂
†(x, t)ψ̂(x, t)] (42)

where Dx = dx − iA(x) is the covariant derivative.
We introduce the current matrix elements

j (α,β)
µν (E) = 〈ψ̃(α)

E

∣∣Ĵ (x, t)
∣∣ψ̃(β)

E

〉
for x ∈ µν (43)

which can be shown to be independent of the coordinate x along the arc (only if the two states
have the same energy). This matrix element can then be computed at the vertex µ (x = 0):

j (α,β)
µν (E) = 1

i

(
ψ̃(α)∗

µ Dxψ̃
(β)

(µν)(µ) − D∗
xψ̃

(α)∗
(µν)(µ)ψ̃(β)

µ

)
. (44)

The quantum and statistical average of the current operator in the arc µν gives

Jµν = 〈Ĵ (x ∈ µν, t)〉 =
∑

α

∫
dEfα(E)j (α,α)

µν (E). (45)

The correlations (unsymmetrized in time or frequency) between the currents in the arcs µν

and µ′ν ′ are defined as

SJµνJµ′ν′ (ω) =
∫ +∞

−∞
d(t − t ′)(〈Ĵ (x, t)Ĵ (x ′, t ′)〉 − 〈Ĵ (x, t)〉〈Ĵ (x ′, t ′)〉) exp(iω(t − t ′)) (46)

for x ∈ µν and x ′ ∈ µ′ν ′. They can be rewritten at zero frequency as

SJµνJµ′ν′ (ω = 0) = 2π
∑
α,β

∫
dEfα(E)[1 − fβ(E)]j (α,β)

µν (E)j
(β,α)

µ′ν ′ (E). (47)

4.2.1. Vertex formulation. Now we look for a relation between the current density and the
scattering matrix. We start from the expression of the scattering state in the arc µν:

ψ(µν)(x) = exp(iθµνx/lµν)(ψµfµν(x) + ψν exp(−iθµν)fνµ(x)). (48)

Then

j (α,β)
µν = 1

i

(
−ψ̃(α)∗

µ

dfµν

dxµν

(ν) exp(−iθµν)ψ̃
(β)
ν + ψ̃(α)∗

ν

dfνµ

dxνµ

(µ) exp(iθµν)ψ̃
(β)
µ

)
(49)
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where we have used the fact that the Wronskian of fµν(x) and fνµ(x) reads: (dfνµ/dxµν)(µ) =
−(dfµν/dxµν)(ν). From the definition of the matrix M, we see that

j (α,β)
µν = −k

i

(
ψ̃(α)∗

µ

dMµν

dθµν

ψ̃(β)
ν + ψ̃(α)∗

ν

dMνµ

dθµν

ψ̃(β)
µ

)
. (50)

Only the two elements Mµν and Mνµ depend on the flux θµν , then

j (α,β)
µν = −k

i

(
�̃† dM

dθµν

�̃

)
αβ

(51)

where �̃ is the V ×L-matrix that gathers the values of the L stationary states at the V vertices:
�̃µα ≡ ψ̃(α)

µ . This matrix is [10, 13]

�̃ = 1√
πk

1

M + WTW
WT. (52)

We can rewrite the current density in terms of matrices M and W :

j (α,β)
µν = − 1

iπ

(
W

1

−M + WTW

dM

dθµν

1

M + WTW
WT

)
αβ

. (53)

Our aim is now to find the relation of this expression with the scattering matrix. We
use the relation (d/dη)A(η)−1 = −A(η)−1(dA(η)/dη)A(η)−1 that gives the derivative of the
inverse of a square matrix A(η) depending on a parameter η. In expression (3) only M depends
on the fluxes, it follows that

d�

dθµν

= −2W
1

M + WTW

dM

dθµν

1

M + WTW
WT. (54)

If we multiply this expression by �† from the left, it replaces the M in the left fraction by −M .
We conclude that the off-diagonal elements of the current density read

j (α,β)
µν (E) = 1

2iπ

(
�† d�

dθµν

)
αβ

. (55)

Note that this result is reminiscent of the one obtained by Taniguchi in [29] who derived some
relation between the scattering matrix and the ‘current density’, i.e. the diagonal elements
(α = β) of (55).

4.2.2. Arc formulation. Let us now reformulate the previous demonstration in the arc
language which allows us to consider the most general case.

As explained in the introduction, the wavefunction on the bond (µν) can be expressed as

ψ(µν)(xµν) = Bµνφµν(xµν) + Bνµφνµ(xµν) (56)

where φµν(xµν) and φνµ(xµν) are the left and right stationary scattering states for the bond
potential V(µν)(xµν). Using the expressions of these functions at the extremities of the bond
given in the introduction, we get the derivative of the wavefunction at the vertex µ:

Dxψ(µν)(µ) = ik[Bµν(1 − rµν) − Bνµtνµ]. (57)

We call B̃(α)
µν the internal amplitude corresponding to the stationary scattering state ψ̃

(α)
E (x).

These amplitudes are obtained by solving the equations B = QA and Aint = RB int with
external amplitudes Aext describing the injection of a plane wave on the lead arriving at vertex
α: its components are Ã

(α)ext
i = √

1/4πkδi,arc α where ‘arc α’ designates the arc related to the
lead issuing from α. Then the amplitude

B̃(α)
µν = 1√

4πk
[(1 − QintR)−1Q̃T]µν,arc α (58)

is related to the matrix element between the internal arc µν and the external arc ‘arc α’.
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After a little bit of algebra, we get for the current density on the arc µν:

j (α,β)
µν = 2k

[
B̃(α)∗

µν |tµν |2B̃(β)
µν + B̃(α)∗

µν t∗µνrνµB̃(β)
νµ − B̃(α)∗

νµ t∗νµrµνB̃
(β)
µν − B̃(α)∗

νµ |tνµ|2B̃(β)
νµ

]
. (59)

We have used t∗µνrνµ = −r∗
µνtνµ coming from the unitarity of R. In the bond scattering matrix

R, only the transmissions depend on the magnetic fluxes: tµν ∝ exp(iθµν). It follows that, in
the matrix (dR†/dθµν)R, only the 2 × 2 block related to the arcs µν and νµ is different from
zero. It is given by

i

(−|tµν |2 −t∗µνrνµ

t∗νµrµν |tνµ|2
)

. (60)

Then it is straightforward to see that

j (α,β)
µν = −2ik

∑
i,j

B̃
(α)∗
i

(
dR†

dθµν

R

)
i,j

B̃
(β)

j (61)

where the sum over i, j runs over the 2B internal arcs. Using expression (58) for the
amplitudes, we obtain

j (α,β)
µν = − 1

2iπ

(
Q̃∗(1 − R†Qint †)−1 dR†

dθµν

R(1 − QintR)−1Q̃T

)
α,β

(62)

= − 1

2iπ

(
�†Q̃(R† − Qint)−1 dR†

dθµν

(R† − Qint)−1Q̃T

)
α,β

(63)

= 1

2iπ

(
�†Q̃

d

dθµν

(R† − Qint)−1Q̃T

)
α,β

= 1

2iπ

(
�† d�

dθµν

)
α,β

. (64)

We have recovered the formula (55) within the arc language7. This demonstrates that
equation (55) applies to the most general situation, as expected.

4.2.3. Average current and current correlations in terms of the scattering matrix. The
average current can be written, as could have been guessed from the general discussion of the
introduction:

Jµν =
∑

α

∫
dEfα(E)

1

2iπ

(
�† d�

dθµν

)
αα

. (65)

The correlations of currents at zero frequency are rewritten in the terms of scattering
matrix:

SJµνJµ′ν′(ω = 0) = − 1

2π

∑
α,β

∫
dEfα[1 − fβ]

(
�† d�

dθµν

)
αβ

(
�† d�

dθµ′ν ′

)
βα

. (66)

If µν = µ′ν ′ this gives the noise of the persistent current. At equilibrium, all potentials are
equal, fα(E) = f (E) ∀α, and we recover an expression reminiscent of the one given in [29]:

SJµνJµ′ν′ (ω = 0) = 1

2π

∫
dEf (E)[1 − f (E)] Tr

{
d�

dθµν

d�†

dθµ′ν ′

}
. (67)

In his work, Taniguchi identifies the contribution ((d�/dθµν)(d�†/dθµ′ν ′))αα of a given
scattering state to this trace. However we see that it is not sufficient to go back to the
expression (66) describing the non-equilibrium situation.
7 We have used the relation �†Q̃(R† − Qint)−1 = Q̃∗(1 − R†Qint †)−1, coming from the unitarity of the scattering
matrices [13].
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4.3. Gauge invariance

Since many formulae involve the fluxes along the wires, it is important to discuss how a
gauge transformation would affect them and to check that all the measurable quantities are
indeed gauge invariant. A gauge transformation changes the vector potential according to
A(x) → A(x) + ∂xχ(x), where χ(x) is a scalar function. The magnetic flux θµν along the arc
µν is then modified according to

θµν −→ θ ′
µν = θµν + χµ − χν (68)

where χµ ≡ χ(µ) is the value taken by the function at the vertex µ. In the vertex approach,
we immediatly see from its definition that the matrix M is changed as

Mµν −→ M ′
µν = Mµν exp(iχµ − iχν). (69)

We can write M ′ = UMU† where the diagonal unitary matrix reads: Uαβ = δαβ exp(iχα).
Since WTW is also diagonal it is clear that (±M ′ + WTW)−1 = U(±M + WTW)−1U†. The
scattering matrix changes in the same way:

�αβ −→ �′
αβ = �αβ exp(iχα − iχβ). (70)

From (53) or (55) we see that the matrix elements of the current operator pick up a phase
through a gauge transformation

j (α,β)
µν −→ j (α,β)

µν exp(iχα − iχβ). (71)

Nevertheless, the average current (45) and the correlations (47) are gauge invariant, as they
should be.

4.4. Weakly connected graphs

As we did for the charge distribution, it is interesting to consider the case of graphs weakly
connected to the leads (wα → 0) for which interesting results can be derived. The starting
point is again the expression (21) of the scattering state near a resonance (when E is close to
an eigenenergy of the isolated graph). Using this relation, the current density matrix element
can be expressed as

j (α,β)
µν (E,E′) = 〈ψ̃(α)

E

∣∣Ĵ (x ∈ µν, t = 0)
∣∣ψ̃(β)

E′
〉

(72)



E,E′∼En

√
En

π

wαϕn(α)

E − En − i�n

wβϕ∗
n(β)

E′ − En + i�n

In
µν (73)

where I n
µν is the current in the arc µν associated with the eigenstate ϕn(x) of the isolated

graph:

I n
µν = −iϕ∗

n(x)Dxϕn(x) + c.c. for x ∈ µν. (74)

Note that in principle the current matrix element (72) between scattering states of different
energies depends on the coordinate x, however in the weak coupling limit, since the two
scattering states are proportional to the same eigenstate ϕn(x), the matrix element becomes x
independent.

Equation (72) shows that the calculation of the average current is very similar to the
calculation of the charge (23):

Jµν 

∑

α

∫ ∞

0
dEfα

∑
n

I n
µν�n,α/π

(E − En)2 + �2
n

=
∑

n

I n
µν

∑
α

�n,α

�n

(
1

π
arctan

Vα − En

�n

+
1

2

)
.

(75)
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a

b

1 2θ
w1

w2

Figure 7. A ring with two arms of lengths la and lb , threaded by a flux θ and coupled with two
leads, with coupling parameters w1,2. The boxes represent the tunable couplings, with transmission
amplitudes 2w1,2/(1 + w2

1,2) (see [10]).

The contribution of the resonant level can be written

J (n)
µν 
 I n

µν〈Q̂(t)〉(n) (76)

where 〈· · ·〉(n) designates the contribution of the resonant level n.
Similarly we obtain for the correlations:

S
(n)
JµνJµ′ν′ (ω) 
 I n

µνI
n
µ′ν ′ S

(n)
QQ(ω). (77)

For example, for a situation with two contacts with a potential drop V and only one
resonant level contributing we get

Jµν 
 I n
µν

�n,L

�n

(78)

and

SJµνJµ′ν′ (0) 
 I n
µνI

n
µ′ν ′

�n,L�n,R

�3
n

. (79)

4.5. Example

Let us focus on the simple example of a ring with two leads (see figure 7).
The scattering matrix of the ring reads

� = −1 +
2

S̃

(
iw2

1 sin kl + w2
1w

2
2sasb iw1w2(sb exp(−iθa) + sa exp(iθb))

iw2w1(sb exp(iθa) + sa exp(−iθb)) iw2
2 sin kl + w2

1w
2
2sasb

)
(80)

where θa and θb are the fluxes of the two arcs and θ = θa + θb the total flux threading the ring.
We have denoted sa,b ≡ sin kla,b.

S̃ = sasb det(M + WTW) = 2(cos θ − cos kl) + i
(
w2

1 + w2
2

)
sin kl + w2

1w
2
2sasb (81)

is the modified spectral determinant. The matrix involved in the current density in the arc a is

�† d�

dθa

= 2 sin θ

S̃
(1 + �†) +

2w1w2sb

S̃

(
−�∗

21 exp(iθa) �∗
11 exp(−iθa)

−�∗
22 exp(iθa) �∗

12 exp(−iθa)

)
(82)

from which we get the contribution of the scattering state ψ̃(1)(x) to the current density in the
arc a:

j (1,1)
a = 1

2iπ

(
�† d�

dθa

)
11

= 2

π |S̃|2
[− w2

1 sin θ sin kl + w2
1w

2
2

(
s2
b + sasb cos θ

)]
. (83)

Let us now study the weak coupling limit w1,2 → 0. Close to a resonance, we obtain

j (1,1)
a (k2) 


k∼k±
n

∓ 1

l

w2
1

w2
1 + w2

2

γ /π(
k − k±

n

)2
+ γ 2

(84)
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a

b

1 2
a

b

Figure 8. Left: a mesoscopic device in the regime of the IQHE with an antidot in the middle. One
edge state is open. Right: the graph that models this arrangement. The scattering at the vertices is
chiral.

where γ = (w2
1 + w2

2

)/
2l. Integrating the contribution of the resonance peak, we get∫ k±

n +δK

k±
n −δK

dk2kj (1,1)
a (k2) 
 w2

1

w2
1 + w2

2

4π

l2

(
∓n − θ

2π

)
. (85)

In the rhs we recognize the persistent current of the level of the isolated ring −(∂/∂θ)
(
k±
n

)2 =
−(∂/∂θ)[(2πn ± θ)/ l]2, multiplied by the ‘relative weight’ w2

1

/(
w2

1 + w2
2

)
of the scattering

state ψ̃(1)(x), as expected from (76).

4.6. Graphs with localized states

In this section we discuss the consequence of the possible existence of localized states in
certain graphs. These states are not probed by scattering, consequently their contributions to
the current are not given by the expressions derived above.

For the sake of simplicity our discussion will be focused on the example of a ring in the
regime of the integer quantum Hall effect, with one edge state. The potential hill in the middle
is called an antidot (figure 8, left). This example must be thought of more as a toy model to
understand the idea of localized states in graphs, than as a realistic model to describe current
distribution in a quantum Hall device where the effect of screening is important (the interested
reader will find some discussion on the nature of edge currents and the role of screening
in [44, 45]). The system can be modelled by a ring with chiral scattering at the vertices
(figure 8, right). The ring has two bonds, i.e. four internal arcs: two arcs a and b carrying
fluxes θa and θb and the two reversed arcs denoted with a bar: ā and b̄. The two leads are
described by arcs 1 and 2.

In the basis of arcs {a, b̄, ā, b|1, 2}, the vertex scattering matrix and bond scattering matrix
are

Q =




0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0




=
(

Qint Q̃T

Q̃ Qext

)
. (86)

The off-diagonal blocks are no longer transposed due to the breaking of the time reversal
symmetry at the vertices (chiral scattering); however, we keep the same notation as above for
simplicity since there is no possible confusion. On the other hand

R =




0 0 exp(ikla − iθa) 0
0 0 0 exp(iklb + iθb)

exp(ikla + iθa) 0 0 0
0 exp(iklb − iθb) 0 0


 . (87)



12444 C Texier and P Degiovanni

We recall that Qij is the transmission amplitude from arc j to arc i due to vertex scattering,
and Rij describes bond scattering due to the potential.

4.6.1. Scattering. The scattering matrix can be computed from Q and R with equation (8),
however the result is obvious here, due to the absence of multiple scattering:

� =
(

0 exp(iklb + iθb)

exp(ikla + iθa) 0

)
. (88)

The current density in the arc a is given by the matrix

�† d�

dθa

=
(

i 0
0 0

)
. (89)

From (55) we get the contribution of the scattering state ψ̃(1)(x) to the current density in the
arm a: j (1,1)

a = 1/2π , whereas the contribution of ψ̃(2)(x) obviously vanishes j (2,2)
a = 0,

since this latter scattering state does not send current into the arc a.

4.6.2. Localized states. We follow the discussion of [11, 13]: if localized states are present,
their discrete spectrum is given by solving det(R† − Qint) = 0. Here, we see that the equation
indeed possesses a set of solutions since det(R† − Qint) = exp(−ikl)(exp(−ikl) − exp(−iθ))

where θ = θa+θb. The spectrum of localized states is kn = (2πn+θ)/ l for n ∈ N if θ ∈ [0, 2π [,
since k � 0 by convention. These states describe a clockwise motion of the electron in the
loop of the graph (right part of figure 8). In the quantum Hall ring picture, they correspond to
states whose wavefunctions are localized on the edge of the antidot (left part of figure 8). The
current associated with the state of energy k2

n in the arc a is −(∂/∂θ)k2
n = −2(2nπ + θ)/ l2.

Note that if one introduces some scattering on the bonds, the localized states are hybridized
with the states of the continuum and the discrete part of the spectrum disappears.

The discrete spectrum also brings some contribution to the current in the arms of the
ring, which cannot be obtained from the scattering properties. Since the state ψ̃(2) does not
contribute, the total average current in arm a finally reads

Ja =
∫ ∞

0
dEf1(E)j (1,1)

a (E) −
∞∑

n=0

fint
(
k2
n

) 2

l2
(2nπ + θ) (90)

where f1(E) is the Fermi distribution for the lead 1 and fint(E) the Fermi distribution for the
localized states inside the graph.

Now we can give the general expression for the current in the arc a for a graph with
localized states. Since the discrete spectrum of localized states {En} is given by the equation

0 = det(R† − Qint) ∝
∏
n

(E − En) (91)

we have

Ja =
∑

β

∫
dEfβ(E)

1

2iπ

(
�† ∂�

∂θa

)
ββ

+
∫

dEfint(E)
1

π
Im

∂

∂θa

ln(det(R† − Qint)|E→E+i0+)

(92)

where fint(E) is the Fermi distribution associated with localized states. The first term is the
contribution of the scattering states whereas the second is the contribution of the localized
states.
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5. Summary

In this paper we have studied the two first cumulants of the charge of a graph connected to
infinite wires, as well as the distribution of currents in the wires inside the graph. In particular,
we have shown the relation with the scattering matrix, allowing us to study these quantities in
an out-of-equilibrium situation, when the graph is connected to wires put at different potentials.
We have obtained a formula for the average current and the current correlations that generalizes
previous results known for the equilibrium situation [17, 29].

We have also emphasized that the scattering matrix contains information only on the
continuous part of the spectrum related to scattering states. If some states remain localized
in the graph, they give an additional contribution to the current not taken into account by the
scattering approach.

We have considered the case of graphs weakly coupled to the leads. It is interesting to
remark that the results obtained in this context are expected to be of much more generality
than graphs, since the starting point was to use an approximation of the scattering state near a
resonant level (21), a form of great generality. In particular, the contribution of the resonant
level n to the average of some quantity X defined inside the graph reads

〈X̂(t)〉(n) 
 Xn 〈Q̂(t)〉(n) (93)

where Xn = 〈ϕn|X̂|ϕn〉 is the expectation of X in the eigenstate |ϕn〉 of the isolated system.
Similarly the contribution of the nth resonant level to the correlations of two observables X
and Y reads

S
(n)
XY (ω) 
 Xn Yn S

(n)
QQ(ω). (94)

These results apply to a situation with narrow resonances (�n � |En+1 − En|). We repeat
that we have not considered the effect of electron–electron interactions in this paper (weakly
connected devices with resonant tunnelling present in principle Coulomb blockade). It would
be interesting to incorporate some effects of interaction. This could already be done in a mean-
field approximation to describe the effect of screening in the charge and current distribution
following Büttiker’s approach [3, 4, 27].
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Appendix A. Relation between the different unsymmetrized correlators

Let us consider A and B two Hermitian operators associated with physical quantities in our
system. There are two unsymmetrized correlation functions:

SA,B(ω) =
∫ +∞

−∞
dτ exp(iωτ)(〈A(t + τ)B(t)〉 − 〈A(t + τ)〉〈B(t)〉) (95)

S̃A,B(ω) =
∫ +∞

−∞
dτ exp(iωτ)(〈B(t)A(t + τ)〉 − 〈B(t)〉〈A(t + τ)〉). (96)

These correlators do not depend on t for a system in a stationary state8. Note that, even if
we consider out of equilibrium situations, only stationary states are considered in the present
paper.
8 Glassy systems are an example for which this is not possible since the system never reaches a stationary state (weak
ergodicity breaking).
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In this case, using time translation invariance of one- and two-point correlation fonctions,
we have:

S̃A,B(ω) =
∫ +∞

−∞
dτ exp(iωτ)(〈B(t − τ)A(t)〉 − 〈B(t − τ)〉〈A(t)〉) (97)

and this gives

S̃A,B(ω) = SB,A(−ω). (98)

When A = B, it shows that one unsymmetrized correlator determines the other one:

S̃A,A(ω) = SA,A(−ω). (99)

Finally, note that the correlator SA,A(ω) is real since the correlator in time obeys SA,A(τ )∗ =
SA,A(−τ).

Appendix B. Structure of the stationary states near a resonance

If we consider a graph weakly coupled to the leads, we expect the stationary scattering states
to be closely related to the eigenstates of the isolated graph. The purpose of the appendix is
to demonstrate the precise relation. The relations we will obtain are very reminiscent of the
Hamiltonian approach of chaotic scattering [46] (see also [47]). In this latter case some small
couplings are introduced between an isolated system and the leads, whereas we rather start
from a situation where the coupling can be arbitrary large and study the weak coupling limit
to see how the properties of the isolated graph emerge from its scattering properties.

Let us consider a graph G, whose spectrum is supposed to be non-degenerate for simplicity
(the occurrence of degeneracies leads to complications related to the possible existence of
localized states in the graph not probed by scattering [11, 13]). In a first step we describe how
the eigenstates of the Schrödinger operator in the graph are constructed and in a second step
we will establish the relation with stationary states in the weak coupling limit.

B.1. Isolated graph

The spectrum of the Schrödinger operator in the graph is given by the equation: S(γ ) = 0,
where S(γ ) = ∏

n(γ + En) is the spectral determinant, whose construction is explained in
[40, 41] for the case of free graphs, in [42, 48] for graphs with potential and in [43] for graphs
with general boundary conditions (more general than the continuity of the wavefunction at
vertices). If the wavefunction is continuous at vertices:

S(γ ) = γ V/2
∏
(αβ)

(
dfβα

dxαβ

(α)

)−1

det M(γ ). (100)

The product runs over all the bonds of the graph. We recall that the functions fαβ(x) involved in
M(γ ) are the solutions of the Schrödinger equation on the bond

[
γ − d2

x + V(αβ)(x)
]
f (x) = 0

for an energy E = −γ . In general S(γ ) = 0 possesses the same set of solutions as

det M(γ ) = 0. (101)

We do not discuss here the case where the sets of zeros of both equations do not coincide,
which is a little bit pathological and would require refining the following arguments. Let us
however quote a few examples of free graphs (V (x) = 0) for which it is the case: the graph
made of one line (in this case det M = 1 is independent of γ ), the complete graph [41, 11],
etc.
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The component of the wavefunction ϕn(x) on the bond (αβ) is

ϕn(αβ)(x) = exp(iAαβx)(ϕn,αfαβ(x) + ϕn,β exp(−iθαβ)fβα(x)) (102)

where ϕn,α is the wavefunction at the vertex α and Aαβ = θαβ/ lαβ the vector potential. (Do
not confuse the label n of the eigenstate with the greek labels that designate vertices.) If we
gather the wavefunction at the nodes in the V -dimensional column vector ϕn, the eigenstate
of energy En is a solution of

M(−En)ϕn = 0. (103)

Normalization. The normalization condition for the eigenstate reads∫
Graph

dx|ϕn(x)|2 =
∑
(αβ)

∫ lαβ

0
dx|ϕn(αβ)(x)|2 = 1. (104)

If we use the following relations [42]:∫ lαβ

0
dxαβfαβ(xαβ)2 = −∂γ

dfαβ

dxαβ

(α) (105)

∫ lαβ

0
dxαβfαβ(xαβ)fβα(xαβ) = ∂γ

dfαβ

dxαβ

(β) (106)

we obtain∫
Graph

dx|ϕn(x)|2 =
∑
(αβ)

[
ϕ∗

n,α∂γ

(
−dfαβ

dxαβ

(α)

)
ϕn,α + ϕ∗

n,α∂γ

(
dfαβ

dxαβ

(β) exp(−iθαβ)

)
ϕn,β

+ ϕ∗
n,β∂γ

(
dfβα

dxβα

(α) exp(iθαβ)

)
ϕn,α + ϕ∗

n,β∂γ

(
−dfβα

dxβα

(β)

)
ϕn,β

]
. (107)

If we replace the sum over bonds by a sum over vertices, the matrix M appears. Finally, the
normalization condition reads for the V -vector ϕn:

ϕ†
n∂γ [

√
γM(γ )]ϕn = 1 (108)

where the spectral parameter is taken, after derivation, equal to the eigenenergy
γ = −En − i0+.

B.2. Graph weakly connected to leads

When the graph is weakly coupled to leads (wα → 0) we expect that the stationary state
ψ̃

(α)
E (x) is proportional to the wavefunction of the isolated graph near the resonance E 
 En:

ψ̃
(α)
E (x) ∝ ϕn(x) for x ∈ G. The question is how to recover precisely this relation from our

formalism?

The resonance width. As a preliminary question, it is instructive to find an expression for the
resonance widths. For this purpose, let us consider the determinant of the scattering matrix
[11]:

det � = (−1)L
det(M − WTW)

det(M + WTW)
(109)

and find an approximation near a resonance En.
For any fixed energy E > 0,M is an anti-Hermitian matrix and can be written in terms

of its purely imaginary eigenvalues iλα(E) and its associate eigenvectors vα(E):

M(−E) = i
V∑

α=1

λα(E)vα(E)v†
α(E). (110)
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The eigenvectors are normalized as v†
αvα = 1. If the energy E is equal to the energy En of

an eigenstate of the isolated graph, one of the eigenvalues of M is vanishing: λ1(En) = 0.
We suppose the spectrum of the isolated graph to be non-degenerate. The eigenvector v1(En)

coincides with the eigenstate: v1(En) = ν−1
n ϕn; however these vectors are not normalized in

the same way and differ in the multiplicative factor νn.
Since det M(−E) is proportional to the spectral determinant and the spectrum is

supposed to be non-degenerate, the eigenvalue λ1(E) behaves linearly near the energy En:
λ1(E) 
 (E − En)βn. The normalization condition (108) reads

−ϕ†
n∂E

(
−i

√
E

V∑
α=1

iλα(E)vα(E)v†
α(E)

)∣∣∣∣∣
E=En

ϕn = 1 (111)

then

−βn

√
Enϕ

†
nv1(En)v

†
1(En)ϕn = 1. (112)

We obtain the normalization constant: νn = 1/
√−knβn where En = k2

n.
We now come back to det �. In the weak coupling limit wα → 0 we can compute

perturbatively the eigenvalues of M ± WTW to express the determinant

det(M(−E) ± WTW) 

E∼En

V∏
α=1

(
iλα(E) ± v†

α(E)WTWvα(E)
)

(113)


 (iβn(E − En) ± v
†
1(En)W

TWv1(En)
) V∏

α=2

iλα(En). (114)

We can use the relation v1(En) = √−knβnϕn to get

det(M(−k2) ± WTW) 

k∼kn

(
k − kn ± i

2
ϕ†

nW
TWϕn

)
2iβnkn

V∏
α=2

iλα

(
k2
n

)
. (115)

Then

det � ∝ k − kn − iγn

k − kn + iγn

(116)

where the resonance width on the k-scale is γn = 1
2ϕ

†
nW

TWϕn = 1
2

∑L
α=1 w2

α|ϕn,α|2. This
result is very satisfactory since it shows that the lead α brings a contribution to the resonance
width proportional to the transmission probability w2

α between the graph and the lead9 and to
the probability density |ϕn,α|2 ≡ |ϕn(α)|2 associated with the eigenstate of the isolated graph,
taken at the vertex α where the graph is connected. On the energy scale the resonance width
reads

�n = 2knγn =
√

Enϕ
†
nW

TWϕn =
L∑

α=1

�n,α (117)

where

�n,α =
√

Enw
2
α|ϕn(α)|2 (118)

is the contribution of the lead α.

The wavefunction. We recall that the V ×L-matrix �̃ that gathers the values of the L scattering
states at the V vertices is [10]

�̃ = 1√
πk

1

M + WTW
WT. (119)

9 The transmission amplitude is 2wα/(1 + w2
α) for finite wα [10].
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We call ψ(α) the V -column vector gathering the values of ψ(α)(x) at the V vertices:
ψ(α) = (

ψ
(α)
1 , . . . , ψ

(α)
V

)T
. The matrix � is obtained by gathering these L column vectors:

� = (ψ(1), . . . , ψ(L)). In the weak coupling limit (wα → 0) and near the resonance En we
can keep only the contribution of the vanishing eigenvalue iλ1(E) of M to compute

1

M + WTW

 1

iβn(E − En) + v
†
1(En)WTWv1(En)

v1(En)v
†
1(En). (120)

It follows that the scattering state at the vertex µ is

ψ̃(α)
µ = �̃µα 
 1√

πk

i/2

k − kn + iγn

ϕn,µ

(
ϕ†

nW
T
)
α

= 1√
4πk

iwαϕ∗
n,α

k − kn + iγn

ϕn,µ. (121)

Since the vertex µ could be any point of the graph because we have always the freedom to
introduce an additional vertex of weight λ = 0 on any bond without changing the properties
of the graph, we can rewrite more elegantly:

ψ̃
(α)

k2 (x) 

k∼kn

1√
4πkn

iwαϕ∗
n(α)

k − kn + iγn

ϕn(x). (122)

Or using the energy scale:

ψ̃
(α)
E (x) 


E∼En

1√
π

iE1/4
n wαϕ∗

n(α)

E − En + i�n

ϕn(x). (123)

The local density of states. The contribution of the scattering state ψ̃
(α)
E (x) to the off-diagonal

LDoS 〈x |δ(E − H)|x ′ 〉 is

ψ̃
(α)
E (x)ψ̃

(α)∗
E (x ′) 


E∼En

�n,α/π

(E − En)2 + �2
n

ϕn(x)ϕ∗
n(x

′). (124)

The LDoS is obtained by summing these contributions over α.

The scattering matrix. The same discussion can be done to find an approximation for the
scattering matrix. We obtain the well-known Breit–Wigner structure:

�αβ(E) 

E∼En

− δαβ +
2i

√
Enwαϕn(α)wβϕ∗

n(β)

E − En + i�n

. (125)

Appendix C. Matrix elements of the charge operator

Our aim is to relate

ρ(α,β)(E) =
∫

Graph
dxψ̃

(α)
E (x)∗ψ̃(β)

E (x) =
∑
(µν)

∫ lµν

0
dxψ̃

(α)∗
(µν)(x)ψ̃

(β)

(µν)(x) (126)

to the scattering matrix. The sum runs over the B bonds. Relation (14) was proved for α = β

in [11] using a different method.
The computation of this integral follows exactly the lines of the one done discussing the

normalization of the states in the isolated graph. Then we obtain

ρ(α,β)(E) =
∑
µ,ν

ψ̃(α)∗
µ ∂E(i

√
EMµν)ψ̃

(β)
ν (127)
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that is

ρ(α,β)(E) =
(

�̃† d

dE
(i
√

EM)�̃

)
αβ

(128)

= − 1

2iπ

(
W

1

−M + WTW

[
2

dM

dE
+

1

E
M

]
1

M + WTW
WT

)
αβ

(129)

where we have used (119). From (3) and
d�

dE
= −2W

1

M + WTW

dM

dE

1

M + WTW
WT (130)

we finally obtain the desired relation

ρ(α,β)(E) = 1

2iπ

(
�† d�

dE
+

1

4E
(� − �†)

)
αβ

. (131)

An alternative way to relate ρ(α,β)(E) to the derivative of the scattering matrix is to
introduce the variable conjugate to the charge: a constant potential U in the graph. The
total potential now reads V (x) + UθG(x) where θG(x) = 1 if x ∈ G and θG(x) = 0 if x
belongs to the leads. In the presence of U, the function fαβ(x) involved in M is a solution of[
E + d2

x − V(αβ)(x) − U
]
fαβ(x) = 0. These functions are obtained by a shift of the spectral

parameter: f U
αβ(x;E) = f 0

αβ(x;E − U). It immediately follows that

ρ(α,β)(E) = −
(

�̃† d

dU
(i
√

EM)�̃

)
αβ

. (132)

Using the same arguments as above we get

ρ(α,β)(E) = − 1

2iπ

(
�† d�

dU

)
αβ

. (133)

It is interesting to compare this relation with (131): it shows that it is not similar to differentiate
with respect to a constant potential U or with respect to the energy since the potential does not
live in the wires. The difference however vanishes at high energy (WKB limit).

A relation between the stationary states and the functional derivative of the scattering
matrix [15]

− 1

2iπ

(
�† δ�

δV (x)

)
αβ

= ψ̃
(α)∗
E (x)ψ̃

(β)

E (x) (134)

was proved for graphs [13] where it is explained how it can be computed with algebraic
calculations only. It follows that we can rewrite equation (131):

−
∫

Graph
dx

δ�

δV (x)
= −d�

dU
= d�

dE
+

1

4E
(�2 − 1). (135)

The first equality, which is obtained by identification of (126), (134) with (133), is also a
consequence of the definition of the functional derivative.
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